Search results for " SIFT"

showing 8 items of 8 documents

Rethinking the sGLOH Descriptor

2018

sGLOH (shifting GLOH) is a histogram-based keypoint descriptor that can be associated to multiple quantized rotations of the keypoint patch without any recomputation. This property can be exploited to define the best distance between two descriptor vectors, thus avoiding computing the dominant orientation. In addition, sGLOH can reject incongruous correspondences by adding a global constraint on the rotations either as an a priori knowledge or based on the data. This paper thoroughly reconsiders sGLOH and improves it in terms of robustness, speed and descriptor dimension. The revised sGLOH embeds more quantized rotations, thus yielding more correct matches. A novel fast matching scheme is a…

Cascade matching0209 industrial biotechnologyHistogram binarizationRFDComputer scienceGLOHComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyCNN descriptorLIOP020901 industrial engineering & automationMROGHArtificial IntelligenceRobustness (computer science)Keypoint matchingSIFTHistogram0202 electrical engineering electronic engineering information engineeringSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - Informaticabusiness.industryApplied MathematicsCognitive neuroscience of visual object recognitionPattern recognitionRotation invariant descriptorsGLOHMIOPComputational Theory and MathematicsKeypoint matching SIFT sGLOH RFDs LIOP MIOP MROGH CNN descriptors rotation invariant descriptors histogram binarization cascade matchingPrincipal component analysis020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftware
researchProduct

Keypoint descriptor matching with context-based orientation estimation

2014

Abstract This paper presents a matching strategy to improve the discriminative power of histogram-based keypoint descriptors by constraining the range of allowable dominant orientations according to the context of the scene under observation. This can be done when the descriptor uses a circular grid and quantized orientation steps, by computing or providing a global reference orientation based on the feature matches. The proposed matching strategy is compared with the standard approaches used with the SIFT and GLOH descriptors and the recent rotation invariant MROGH and LIOP descriptors. A new evaluation protocol based on an approximated overlap error is presented to provide an effective an…

GLOHComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformContext basedReference orientationImage descriptorLIOPDiscriminative modelMROGHHistogramKeypoint matchingSIFTComputer Science::MultimediaComputer visionInvariant (mathematics)MathematicsDominant orientationSettore INF/01 - Informaticabusiness.industryPattern recognitionGridLocal featureRotation invarianceComputer Science::Computer Vision and Pattern RecognitionSignal ProcessingImage descriptors; Local features; Dominant orientation; Rotation invariance; Keypoint matching; SIFT; LIOP; MROGHComputer Vision and Pattern RecognitionArtificial intelligencebusiness
researchProduct

Object Recognition and Modeling Using SIFT Features

2013

In this paper we present a technique for object recognition and modelling based on local image features matching. Given a complete set of views of an object the goal of our technique is the recognition of the same object in an image of a cluttered environment containing the object and an estimate of its pose. The method is based on visual modeling of objects from a multi-view representation of the object to recognize. The first step consists of creating object model, selecting a subset of the available views using SIFT descriptors to evaluate image similarity and relevance. The selected views are then assumed as the model of the object and we show that they can effectively be used to visual…

Object RecognitionSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSIFT.business.industryComputer science3D single-object recognitionObject Recognition; Pose Estimation; Object Model; SIFT.ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognition3D pose estimationObject (computer science)Object-oriented designPose EstimationHaar-like featuresObject modelViola–Jones object detection frameworkComputer visionArtificial intelligencebusinessPoseObject Model
researchProduct

Improving SIFT-based descriptors stability to rotations

2010

Image descriptors are widely adopted structures to match image features. SIFT-based descriptors are collections of gradient orientation histograms computed on different feature regions, commonly divided by using a regular Cartesian grid or a log-polar grid. In order to achieve rotation invariance, feature patches have to be generally rotated in the direction of the dominant gradient orientation. In this paper we present a modification of the GLOH descriptor, a SIFT-based descriptor based on a log-polar grid, which avoids to rotate the feature patch before computing the descriptor since predefined discrete orientations can be easily derived by shifting the descriptor vector. The proposed des…

PixelSettore INF/01 - Informaticabusiness.industryOrientation (computer vision)GLOHInformationSystems_INFORMATIONSTORAGEANDRETRIEVALFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformPattern recognitionComputingMethodologies_PATTERNRECOGNITIONdescriptors SIFT sGLOH sGLOH+ computer vision.Robustness (computer science)Feature (computer vision)Computer Science::Computer Vision and Pattern RecognitionHistogramComputer Science::MultimediaComputer visionArtificial intelligencebusinessMathematics
researchProduct

Prnu Pattern Alignment for Images and Videos Based on Scene Content

2019

This paper proposes a novel approach for registering the PRNU pattern between different camera acquisition modes by relying on the imaged scene content. First, images are aligned by establishing correspondences between local descriptors: The result can then optionally be refined by maximizing the PRNU correlation. Comparative evaluations show that this approach outperforms those based on brute-force and particle swarm optimization in terms of reliability, accuracy and speed. The proposed scene-based approach for PRNU pattern alignment is suitable for video source identification in multimedia forensics applications.

Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni021110 strategic defence & security studiesSettore INF/01 - Informaticabusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesPRNU SIFT image registration video stabilizationParticle swarm optimization02 engineering and technologyVideos Particle swarm optimization Image resolution Correlation Reliability Cameras SensorsIdentification (information)Content (measure theory)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusinessReliability (statistics)
researchProduct

Copy–Move Forgery Detection by Matching Triangles of Keypoints

2015

Copy-move forgery is one of the most common types of tampering for digital images. Detection methods generally use block-matching approaches, which first divide the image into overlapping blocks and then extract and compare features to find similar ones, or point-based approaches, in which relevant keypoints are extracted and matched to each other to find similar areas. In this paper, we present a very novel hybrid approach, which compares triangles rather than blocks, or single points. Interest points are extracted from the image, and objects are modeled as a set of connected triangles built onto these points. Triangles are matched according to their shapes (inner angles), their content (c…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer Networks and CommunicationsComputer scienceDelaunay triangulationbusiness.industryFeature vectorSURFFeature extractionScale-invariant feature transformPattern recognitionDelaunay TriangulationDigital Image ForensicVisualizationVertex (geometry)Copy-move ForgeryDigital imageComputer Networks and CommunicationHarriSIFTComputer visionArtificial intelligenceSafety Risk Reliability and QualitybusinessCopy-move Forgery; Delaunay Triangulation; Digital Image Forensics; Harris; SIFT; SURF; Computer Networks and Communications; Safety Risk Reliability and QualityTransformation geometryIEEE Transactions on Information Forensics and Security
researchProduct

Exploiting Visual Saliency Algorithms for Object-Based Attention: A New Color and Scale-Based Approach

2017

Visual Saliency aims to detect the most important regions of an image from a perceptual point of view. More in detail, the goal of Visual Saliency is to build a Saliency Map revealing the salient subset of a given image by analyzing bottom-up and top-down factors of Visual Attention. In this paper we proposed a new method for Saliency detection based on colour and scale analysis, extending our previous work based on SIFT spatial density inspection. We conducted several experiments to study the relationships between saliency methods and the object attention processes and we collected experimental data by tracking the eye movements of thirty viewers in the first three seconds of observation o…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer sciencebusiness.industrymedia_common.quotation_subject05 social sciencesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONEye movementExperimental dataScale-invariant feature transformVisual saliency Object-based attention SIFT Fixation maps Dataset Eye trackingPattern recognition02 engineering and technology050105 experimental psychologySalientPerceptionFixation (visual)0202 electrical engineering electronic engineering information engineeringEye tracking020201 artificial intelligence & image processing0501 psychology and cognitive sciencesComputer visionArtificial intelligencebusinessObject-based attentionmedia_common
researchProduct

Visual saliency by keypoints distribution analysis

2011

In this paper we introduce a new method for Visual Saliency detection. The goal of our method is to emphasize regions that show rare visual aspects in comparison with those showing frequent ones. We propose a bottom up approach that performs a new technique based on low level image features (texture) analysis. More precisely, we use SIFT Density Maps (SDM), to study the distribution of keypoints into the image with different scales of observation, and its relationship with real fixation points. The hypothesis is that the image regions that show a larger distance from the mode (most frequent value) of the keypoints distribution over all the image are the same that better capture our visual a…

saliency visual attentiontexture SIFTComputer sciencebusiness.industryFixation (visual)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONVisual attentionScale-invariant feature transformPattern recognitionComputer visionTop-down and bottom-up designArtificial intelligencebusinessVisual saliency
researchProduct