Search results for " SIFT"
showing 8 items of 8 documents
Rethinking the sGLOH Descriptor
2018
sGLOH (shifting GLOH) is a histogram-based keypoint descriptor that can be associated to multiple quantized rotations of the keypoint patch without any recomputation. This property can be exploited to define the best distance between two descriptor vectors, thus avoiding computing the dominant orientation. In addition, sGLOH can reject incongruous correspondences by adding a global constraint on the rotations either as an a priori knowledge or based on the data. This paper thoroughly reconsiders sGLOH and improves it in terms of robustness, speed and descriptor dimension. The revised sGLOH embeds more quantized rotations, thus yielding more correct matches. A novel fast matching scheme is a…
Keypoint descriptor matching with context-based orientation estimation
2014
Abstract This paper presents a matching strategy to improve the discriminative power of histogram-based keypoint descriptors by constraining the range of allowable dominant orientations according to the context of the scene under observation. This can be done when the descriptor uses a circular grid and quantized orientation steps, by computing or providing a global reference orientation based on the feature matches. The proposed matching strategy is compared with the standard approaches used with the SIFT and GLOH descriptors and the recent rotation invariant MROGH and LIOP descriptors. A new evaluation protocol based on an approximated overlap error is presented to provide an effective an…
Object Recognition and Modeling Using SIFT Features
2013
In this paper we present a technique for object recognition and modelling based on local image features matching. Given a complete set of views of an object the goal of our technique is the recognition of the same object in an image of a cluttered environment containing the object and an estimate of its pose. The method is based on visual modeling of objects from a multi-view representation of the object to recognize. The first step consists of creating object model, selecting a subset of the available views using SIFT descriptors to evaluate image similarity and relevance. The selected views are then assumed as the model of the object and we show that they can effectively be used to visual…
Improving SIFT-based descriptors stability to rotations
2010
Image descriptors are widely adopted structures to match image features. SIFT-based descriptors are collections of gradient orientation histograms computed on different feature regions, commonly divided by using a regular Cartesian grid or a log-polar grid. In order to achieve rotation invariance, feature patches have to be generally rotated in the direction of the dominant gradient orientation. In this paper we present a modification of the GLOH descriptor, a SIFT-based descriptor based on a log-polar grid, which avoids to rotate the feature patch before computing the descriptor since predefined discrete orientations can be easily derived by shifting the descriptor vector. The proposed des…
Prnu Pattern Alignment for Images and Videos Based on Scene Content
2019
This paper proposes a novel approach for registering the PRNU pattern between different camera acquisition modes by relying on the imaged scene content. First, images are aligned by establishing correspondences between local descriptors: The result can then optionally be refined by maximizing the PRNU correlation. Comparative evaluations show that this approach outperforms those based on brute-force and particle swarm optimization in terms of reliability, accuracy and speed. The proposed scene-based approach for PRNU pattern alignment is suitable for video source identification in multimedia forensics applications.
Copy–Move Forgery Detection by Matching Triangles of Keypoints
2015
Copy-move forgery is one of the most common types of tampering for digital images. Detection methods generally use block-matching approaches, which first divide the image into overlapping blocks and then extract and compare features to find similar ones, or point-based approaches, in which relevant keypoints are extracted and matched to each other to find similar areas. In this paper, we present a very novel hybrid approach, which compares triangles rather than blocks, or single points. Interest points are extracted from the image, and objects are modeled as a set of connected triangles built onto these points. Triangles are matched according to their shapes (inner angles), their content (c…
Exploiting Visual Saliency Algorithms for Object-Based Attention: A New Color and Scale-Based Approach
2017
Visual Saliency aims to detect the most important regions of an image from a perceptual point of view. More in detail, the goal of Visual Saliency is to build a Saliency Map revealing the salient subset of a given image by analyzing bottom-up and top-down factors of Visual Attention. In this paper we proposed a new method for Saliency detection based on colour and scale analysis, extending our previous work based on SIFT spatial density inspection. We conducted several experiments to study the relationships between saliency methods and the object attention processes and we collected experimental data by tracking the eye movements of thirty viewers in the first three seconds of observation o…
Visual saliency by keypoints distribution analysis
2011
In this paper we introduce a new method for Visual Saliency detection. The goal of our method is to emphasize regions that show rare visual aspects in comparison with those showing frequent ones. We propose a bottom up approach that performs a new technique based on low level image features (texture) analysis. More precisely, we use SIFT Density Maps (SDM), to study the distribution of keypoints into the image with different scales of observation, and its relationship with real fixation points. The hypothesis is that the image regions that show a larger distance from the mode (most frequent value) of the keypoints distribution over all the image are the same that better capture our visual a…